On the Khovanov and Knot Floer Homologies of Quasi-alternating Links

نویسندگان

  • CIPRIAN MANOLESCU
  • PETER OZSVÁTH
چکیده

Quasi-alternating links are a natural generalization of alternating links. In this paper, we show that quasi-alternating links are “homologically thin” for both Khovanov homology and knot Floer homology. In particular, their bigraded homology groups are determined by the signature of the link, together with the Euler characteristic of the respective homology (i.e. the Jones or the Alexander polynomial). The proofs use the exact triangles relating the homology of a link with the homologies of its two resolutions at a crossing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knot Polynomials and Knot Homologies

This is an expository paper discussing some parallels between the Khovanov and knot Floer homologies. We describe the formal similarities between the theories, and give some examples which illustrate a somewhat mysterious correspondence between them.

متن کامل

An Unoriented Skein Exact Triangle for Knot Floer Homology

Given a crossing in a planar diagram of a link in the three-sphere, we show that the knot Floer homologies of the link and its two resolutions at that crossing are related by an exact triangle. As a consequence, we deduce that for any quasi-alternating link, the total rank of its knot Floer homology is equal to the determinant of the link.

متن کامل

The Superpolynomial for Knot Homologies

We propose a framework for unifying the sl(N) Khovanov-Rozansky homology (for all N) with the knot Floer homology. We argue that this unification should be accomplished by a triply graded homology theory which categorifies the HOMFLY polynomial. Moreover, this theory should have an additional formal structure of a family of differentials. Roughly speaking, the triply graded theory by itself cap...

متن کامل

Notes on the Heegaard-floer Link Surgery Spectral Sequence

In [8], P. Ozsváth and Z. Szabó constructed a spectral sequence computing the HeegaardFloer homology ĤF (YL) where YL is the result of surgery on a framed link, L, in Y . The terms in the E1-page of this spectral sequence are Heegaard-Floer homologies of surgeries on L for other framings derived from the original. They used this result to analyze the branched double cover of a link L ⊂ S3 where...

متن کامل

On Khovanov Invariant for Alternating Links

We prove the first conjecture of Bar-Natan, Garoufalidis, and Khovanov on the Khovanov invariant for alternating knots.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007